\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx\) [1371]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 378 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 \left (2 A b^2+a b B-a^2 (3 A+C)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (A b^4+2 a^3 b B+2 a b^3 B+a^4 C-5 a^2 b^2 (A+C)\right ) \sin (c+d x)}{3 a b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2/3*(A*b^2-a*(B*b-C*a))*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2)+2/3*(A*b^4+2*B*a^3*b
+2*B*a*b^3+a^4*C-5*a^2*b^2*(A+C))*sin(d*x+c)/a/b/(a^2-b^2)^2/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)-2/3*(2*
A*b^2+B*a*b-a^2*(3*A+C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*
(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a^2/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)-2/3*(2
*A*b^3+3*B*a^3+B*a*b^2-2*a^2*b*(3*A+2*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*
x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^2/(a^2-b^2)^2/d/((b+a*cos(d*x+c))/
(a+b))^(1/2)

Rubi [A] (verified)

Time = 1.46 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {4350, 4183, 4185, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{3 b d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}-\frac {2 \left (-\left (a^2 (3 A+C)\right )+a b B+2 A b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \sqrt {\cos (c+d x)} \left (3 a^3 B-2 a^2 b (3 A+2 C)+a b^2 B+2 A b^3\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \sin (c+d x) \left (a^4 C+2 a^3 b B-5 a^2 b^2 (A+C)+2 a b^3 B+A b^4\right )}{3 a b d \left (a^2-b^2\right )^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(-2*(2*A*b^2 + a*b*B - a^2*(3*A + C))*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]
)/(3*a^2*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(2*A*b^3 + 3*a^3*B + a*b^2*B - 2*a^2*
b*(3*A + 2*C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^2*(a^2
- b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(3*b*(a^2 - b^2)*d*S
qrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) + (2*(A*b^4 + 2*a^3*b*B + 2*a*b^3*B + a^4*C - 5*a^2*b^2*(A + C))
*Sin[c + d*x])/(3*a*b*(a^2 - b^2)^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4183

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d)*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*
(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1))), x] + Dist[d/(b*(a^2 - b^2)*
(m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1)
 + b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f*
x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 4185

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} \left (-A b^2+a (b B-a C)\right )+\frac {3}{2} b (b B-a (A+C)) \sec (c+d x)+\frac {1}{2} \left (2 A b^2-2 a b B-a^2 C+3 b^2 C\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (A b^4+2 a^3 b B+2 a b^3 B+a^4 C-5 a^2 b^2 (A+C)\right ) \sin (c+d x)}{3 a b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} b \left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right )-\frac {1}{4} a b \left (4 a b B-a^2 (3 A+C)-b^2 (A+3 C)\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a b \left (a^2-b^2\right )^2} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (A b^4+2 a^3 b B+2 a b^3 B+a^4 C-5 a^2 b^2 (A+C)\right ) \sin (c+d x)}{3 a b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (2 A b^2+a b B-a^2 (3 A+C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )}-\frac {\left (\left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (A b^4+2 a^3 b B+2 a b^3 B+a^4 C-5 a^2 b^2 (A+C)\right ) \sin (c+d x)}{3 a b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (2 A b^2+a b B-a^2 (3 A+C)\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^2 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)}} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (A b^4+2 a^3 b B+2 a b^3 B+a^4 C-5 a^2 b^2 (A+C)\right ) \sin (c+d x)}{3 a b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (2 A b^2+a b B-a^2 (3 A+C)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^2 \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^2 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = -\frac {2 \left (2 A b^2+a b B-a^2 (3 A+C)\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (A b^4+2 a^3 b B+2 a b^3 B+a^4 C-5 a^2 b^2 (A+C)\right ) \sin (c+d x)}{3 a b \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 25.12 (sec) , antiderivative size = 673, normalized size of antiderivative = 1.78 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=\frac {(b+a \cos (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {4 \left (A b^2 \sin (c+d x)-a b B \sin (c+d x)+a^2 C \sin (c+d x)\right )}{3 a \left (a^2-b^2\right ) (b+a \cos (c+d x))^2}+\frac {4 \left (-6 a^2 A b \sin (c+d x)+2 A b^3 \sin (c+d x)+3 a^3 B \sin (c+d x)+a b^2 B \sin (c+d x)-4 a^2 b C \sin (c+d x)\right )}{3 a \left (a^2-b^2\right )^2 (b+a \cos (c+d x))}\right )}{d \sqrt {\cos (c+d x)} (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+b \sec (c+d x))^{5/2}}+\frac {4 \cos ^{\frac {3}{2}}(c+d x) (b+a \cos (c+d x))^2 \sqrt {\sec (c+d x)} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-i (a+b) \left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i a (a+b) \left (-2 A b^2+a^2 (3 A-3 B+C)+a b (3 A-B+3 C)\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-\left (2 A b^3+3 a^3 B+a b^2 B-2 a^2 b (3 A+2 C)\right ) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 \left (a^3-a b^2\right )^2 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+b \sec (c+d x))^{5/2}} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

((b + a*Cos[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((4*(A*b^2*Sin[c + d*x] - a*b*B*Sin[c + d*x] +
 a^2*C*Sin[c + d*x]))/(3*a*(a^2 - b^2)*(b + a*Cos[c + d*x])^2) + (4*(-6*a^2*A*b*Sin[c + d*x] + 2*A*b^3*Sin[c +
 d*x] + 3*a^3*B*Sin[c + d*x] + a*b^2*B*Sin[c + d*x] - 4*a^2*b*C*Sin[c + d*x]))/(3*a*(a^2 - b^2)^2*(b + a*Cos[c
 + d*x]))))/(d*Sqrt[Cos[c + d*x]]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(5/2)
) + (4*Cos[c + d*x]^(3/2)*(b + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*(A
 + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-I)*(a + b)*(2*A*b^3 + 3*a^3*B + a*b^2*B - 2*a^2*b*(3*A + 2*C))*Ellipt
icE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)
/2]^2)/(a + b)] - I*a*(a + b)*(-2*A*b^2 + a^2*(3*A - 3*B + C) + a*b*(3*A - B + 3*C))*EllipticF[I*ArcSinh[Tan[(
c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - (
2*A*b^3 + 3*a^3*B + a*b^2*B - 2*a^2*b*(3*A + 2*C))*(b + a*Cos[c + d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Tan[(c + d*
x)/2]))/(3*(a^3 - a*b^2)^2*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + b*Sec[c + d*x])^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4360\) vs. \(2(408)=816\).

Time = 8.04 (sec) , antiderivative size = 4361, normalized size of antiderivative = 11.54

method result size
default \(\text {Expression too large to display}\) \(4361\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d*(-B*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c
))/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^2-3*C*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b
)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)-2*A*EllipticE(((a-b)/(a+b))
^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2
)*b^4+3*A*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b+a
*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^4+6*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b)
)^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b^2+3*A*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^3*b-3*A*EllipticF(((a-b)/
(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2
*b^2-2*A*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))
/(1+cos(d*x+c)))^(1/2)*a*b^3+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)
*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*cos(d*x+c)-3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1
/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^4*cos(d*x+c)+C*(1/(a+b)*(b+a
*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))
*a^4*cos(d*x+c)+C*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-cs
c(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b+4*C*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+
b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^2+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^
(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b-B*(1/(a+b)*(b+a*cos(d*
x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^
2-3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-
(a+b)/(a-b))^(1/2))*a^3*b-B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot
(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^3-2*A*sin(d*x+c)*((a-b)/(a+b))^(1/2)*b^4*(1/(1+cos(d*x+c)))^(1/2
)-3*C*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1
+cos(d*x+c)))^(1/2)*a^2*b^2+4*C*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1
/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^2-B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-c
sc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^3*b-3*C*Ellipt
icF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*(1/(a+b)*(b+a*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*a^3*b-2*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(
cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*a^2*b^2-C*((a-b)/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/
2)*a^4*sin(d*x+c)-3*B*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+
a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^4*cos(d*x+c)^2+3*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c))
,(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^4*cos(d*x+c)^2+C*EllipticF(((a-b)/(a+
b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^4*co
s(d*x+c)^2+3*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d
*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*a^4+6*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((
a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*a^3*b-2*A*(1/(a+b)*(b+a*cos(d*x+c
))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c
)^2*a*b^3-3*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*
x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*a^3*b+6*A*sin(d*x+c)*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b*(1/(1+cos(d
*x+c)))^(1/2)-A*sin(d*x+c)*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b^2*(1/(1+cos(d*x+c)))^(1/2)-3*A*sin(d*x+c)*cos(
d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3*(1/(1+cos(d*x+c)))^(1/2)+B*sin(d*x+c)*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b*(1
/(1+cos(d*x+c)))^(1/2)+3*C*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+5*A*sin(d*
x+c)*((a-b)/(a+b))^(1/2)*a^2*b^2*(1/(1+cos(d*x+c)))^(1/2)-A*sin(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3*(1/(1+cos(d*x
+c)))^(1/2)-2*B*sin(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b*(1/(1+cos(d*x+c)))^(1/2)+B*sin(d*x+c)*((a-b)/(a+b))^(1/2)
*a^2*b^2*(1/(1+cos(d*x+c)))^(1/2)-B*sin(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3*(1/(1+cos(d*x+c)))^(1/2)-C*((a-b)/(a+
b))^(1/2)*a^3*b*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+4*C*((a-b)/(a+b))^(1/2)*a^2*b^2*(1/(1+cos(d*x+c)))^(1/2)*s
in(d*x+c)-C*sin(d*x+c)*cos(d*x+c)*((a-b)/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^4+6*A*EllipticE(((a-b)/(a+b))
^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2
)*a^3*b+6*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b
+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b^2-2*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)
/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^3-5*A*EllipticF(((a-b)/(a+b))^(1
/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a
^2*b^2+2*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*a^3*b*cos(d*x+c)-B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(
a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^2*cos(d*x+c)-3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+
cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b*cos(d*x+c
)-B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a
+b)/(a-b))^(1/2))*a^2*b^2*cos(d*x+c)-B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))
^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^3*cos(d*x+c)-2*C*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x
+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*b*cos(d*x+c)+4*C*(
1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(
a-b))^(1/2))*a^3*b*cos(d*x+c)+4*C*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2
)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b^2*cos(d*x+c)-2*A*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+
c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^3-3*B*sin(
d*x+c)*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^4*(1/(1+cos(d*x+c)))^(1/2)-2*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+
c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^4)*cos(d*x+c)^(1/2)*(a+
b*sec(d*x+c))^(1/2)/(1/(1+cos(d*x+c)))^(1/2)/(b+a*cos(d*x+c))^2/(a-b)/(a+b)^2/((a-b)/(a+b))^(1/2)/a^2/(1+cos(d
*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.18 (sec) , antiderivative size = 1202, normalized size of antiderivative = 3.18 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/9*(6*(C*a^6 + 2*B*a^5*b - 5*(A + C)*a^4*b^2 + 2*B*a^3*b^3 + A*a^2*b^4 + (3*B*a^6 - 2*(3*A + 2*C)*a^5*b + B*a
^4*b^2 + 2*A*a^3*b^3)*cos(d*x + c))*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) +
(sqrt(2)*(-3*I*(3*A + C)*a^6 + 6*I*B*a^5*b + I*(9*A - C)*a^4*b^2 - 2*I*B*a^3*b^3 - 4*I*A*a^2*b^4)*cos(d*x + c)
^2 - 2*sqrt(2)*(3*I*(3*A + C)*a^5*b - 6*I*B*a^4*b^2 - I*(9*A - C)*a^3*b^3 + 2*I*B*a^2*b^4 + 4*I*A*a*b^5)*cos(d
*x + c) + sqrt(2)*(-3*I*(3*A + C)*a^4*b^2 + 6*I*B*a^3*b^3 + I*(9*A - C)*a^2*b^4 - 2*I*B*a*b^5 - 4*I*A*b^6))*sq
rt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*
sin(d*x + c) + 2*b)/a) + (sqrt(2)*(3*I*(3*A + C)*a^6 - 6*I*B*a^5*b - I*(9*A - C)*a^4*b^2 + 2*I*B*a^3*b^3 + 4*I
*A*a^2*b^4)*cos(d*x + c)^2 - 2*sqrt(2)*(-3*I*(3*A + C)*a^5*b + 6*I*B*a^4*b^2 + I*(9*A - C)*a^3*b^3 - 2*I*B*a^2
*b^4 - 4*I*A*a*b^5)*cos(d*x + c) + sqrt(2)*(3*I*(3*A + C)*a^4*b^2 - 6*I*B*a^3*b^3 - I*(9*A - C)*a^2*b^4 + 2*I*
B*a*b^5 + 4*I*A*b^6))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3
*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*(sqrt(2)*(3*I*B*a^6 - 2*I*(3*A + 2*C)*a^5*b + I*B*a^4*b^2 +
 2*I*A*a^3*b^3)*cos(d*x + c)^2 + 2*sqrt(2)*(3*I*B*a^5*b - 2*I*(3*A + 2*C)*a^4*b^2 + I*B*a^3*b^3 + 2*I*A*a^2*b^
4)*cos(d*x + c) + sqrt(2)*(3*I*B*a^4*b^2 - 2*I*(3*A + 2*C)*a^3*b^3 + I*B*a^2*b^4 + 2*I*A*a*b^5))*sqrt(a)*weier
strassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2,
 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*(sqrt(2)*(-3*I*B*a^6 +
2*I*(3*A + 2*C)*a^5*b - I*B*a^4*b^2 - 2*I*A*a^3*b^3)*cos(d*x + c)^2 + 2*sqrt(2)*(-3*I*B*a^5*b + 2*I*(3*A + 2*C
)*a^4*b^2 - I*B*a^3*b^3 - 2*I*A*a^2*b^4)*cos(d*x + c) + sqrt(2)*(-3*I*B*a^4*b^2 + 2*I*(3*A + 2*C)*a^3*b^3 - I*
B*a^2*b^4 - 2*I*A*a*b^5))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weiers
trassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c)
 + 2*b)/a)))/((a^9 - 2*a^7*b^2 + a^5*b^4)*d*cos(d*x + c)^2 + 2*(a^8*b - 2*a^6*b^3 + a^4*b^5)*d*cos(d*x + c) +
(a^7*b^2 - 2*a^5*b^4 + a^3*b^6)*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(5/2)), x)